İyonik bağlı olmayan diatomik moleküler genellikle kovolant bağ yaparlar. Daha önce belirtildiği gibi, bir veya daha çok elektron iki çekirdek arasındaki bölgede yoğunlaştığında kovolant bağ oluşur. Bu yoğunlaşmanın nasıl olduğunu anlamak için en basit molekül olan iyonu, yani iki proton ve bir elektrondan oluşan sistemi göz önüne alalım. Bir elektronlu molekül ( ) yapısını anladıktan sonra H2, O2, H2O gibi çok elektronlu kovolant bağlı moleküllerin yapısını anlamak daha kolay olacaktır. iyon molekülü iyonunda bir elektron, iki protonun elektik alanında hareket eder. Protonlar çok ağır olduğundan, elektrona oranla daha az hareket eder. Protonlar çok ağır olduğundan, elektrona oranla daha az hareket ederler; bunları durgun kabul etmek iyi bir yaklaşıklık olur. Bu yaklaşıklıkta tek elektronun sabit iki protonun alanındaki Schrödinger denklemini çözüp olduğu gibi E enerjili durumunu bulabiliriz. İyonik molekülerde olduğu gibi, bu enerji de çekirdekler arasındaki R uzaklığına bağlı olacaktır. Eğer E(R) fonksiyonu bir Ro değerinde minimum oluyorsa, enerjisi E(R) ve bağ uzunluğu Ro olan kararlı bir molekül oluşacaktır. Schrödinger denklemini çözmeden önce bir koordinat sistemi seçmeliyiz. Uygun bir seçim, şekil 1’de gösterildiği gibi, iki protonu x ekseni üzerinde x = R/2 konumlarında olmaktır. Elektronun konumu ile gösterilirse, yapılacak iş belirli bir R uzaklığında minimum toplam enerjiyi veren r dalga fonksiyonunu bulmaktır. Şekil 1 : molekülü iki proton ve bir elektrondan oluşur. Protonlar x = R/2’de sabit kabul edilir. Elektronun orijine göre konumu dir. Elektronun elektrostatik potansiyel enerjisi iki protona olan r1 ve r2 uzaklığına bağlıdır. iyonundaki elektronun Schrödinger denkleminin doğrudan analitik çözümü vardır, fakat çok karmaşık ve yoruma kapalı olur. Burada amacımıza uygun yaklaşık bir çözüm arayacağız. Bunun için, önce iki protonun birbirinden çok uzakta olduğunu varsayalım; yani R uzaklığı aB Bohr yarı çapına göre çok büyük olsun. Bu durumda Schrödinger denkleminin çözümünü görebilmek kolaydır. Elektron 1. Protona yakın olduğunda 2. Protonun etkisi yok sayılabilir ve en düşük enerjili durum 1. Protonun taban durumu olur. Buna karşılık gelen 1 ( ) dalga fonksiyonu, bildiğimiz 1s dalga fonksiyonu olur. Burada r1 elektronun 1. Protona uzaklığıdır. Bununla aynı enerjili ikinci bir durum elektronun 2. Protona bağlı olduğu durum olup bununda dalga fonksiyonu olur. Bu iki dalga fonksiyonu şekil 2’de gösterilmiştir. Şekil 2 : molekülündeki iki proton birbirinden uzakta olduğunda (R aB) tek elektronun dalga fonksiyonları. 1 fonksiyonu elektronun 1. Protonun 1s yörüngesinde bağlı durumunu gösterir ve 2. proton konumundan pek etkilenmez. 2 aynı elektronun 2. protona bağlı olduğu durumu temsil eder. 1 ve 1 dalga fonksiyonları Schrödinger denkleminin aynı enerjiye karşılık gelen iki çözümü olduğunda, katkı olurlar
Kovalent bağ,iki atom arasında, bir veya daha fazla elektronun paylaşılmasıyla karakterize edilen kimyasal bağın bir tanımıdır. Genellikle bağ, ortaya çıkan molekülü bir arada tutan ortak çekim gücü olarak tanımlanabilir. Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu bölgede (-) yüklü bir alan yaratacaklardır. Bu alan, her iki çekirdeğe bir çekme kuvveti uygulayarak bir bağ yaratır. Kovalent bağ, söz konusu atomların dış yörüngelerinin dolması ile meydana gelir. Bu tür bağlar, moleküller arası hidrojen bağından daima daha güçlü, iyonik bağ ile ise ya aynı güçte ya da daha güçlüdür. Bazı inorganik maddelerin hidrojen(H), amonyak(NH3),klor(Cl), su(H2O) ve azot(N) molekülleri ile tüm organik maddelerin molekülleri kovalent bağ ile bir arada tutulmaktadır. Kovalent bağ (iyonik ve metalik bağın tersine) yönlüdür; bağ açılarının etkileşimin gücü üzerinde etkisi büyüktür. Bu etkinin kaynağı, kovalent bağların, atomik yörüngelerin üst üste binmesiyle oluşmasından ileri gelir. Atomik yörüngeler (p, d, ve f orbitalleri) hepsi yönlü karakterde olup, bağlanma esnasında önemli ölçüde yöne bağlı etkileşime neden olurlar. Kovalent bağ, genellikle benzer elektronegatifliğe sahip atomlar arasında gerçekleşir. Bu nedenle ametaller, daha kolaylıkla kovalent bağı tercih eder ve metaller de kolayca yerlerinden oynatılabilen elektronların daha serbestçe dolaşabildiği metalik bağ yaparlar. Ametallerde bir elektronun serbest kalması daha zordur, dolayısıyla benzer elektronegatifliğe sahip bir madde ile birleşme söz konusu olduğunda o elektronun paylaşılması tek seçenek haline gelir. Alıntı